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ABSTRACT: We present an offline paleo-data assimilation methodology that formally combines the analog assimila-
tion method (AA) and the Kalman filter (KF), utilizing the KF as a postprocessor of the AA output. This methodol-
ogy can be applied to reconstruct climate fields that are spatially separated from proxy-based reconstructions by using
the spatial covariability generated by a climate model. Our method is applied to a set of spatially resolved and spa-
tially consistent climate reconstructions of several variables reflecting different seasons, incorporating the application
of methodological variants that have undergone rigorous testing in terms of both improving statistical methodology
and physical interpretation. This contrasts with applications primarily based on transfer relationships of annual means
of local, single variable or bivariate, climate model priors into paleo proxy states. The gains from adding the KF post-
processor are modest in our test case of reconstructing sea level pressure (SLP) geopotential height fields in the
northeast Pacific, utilizing paleoclimatic temperature and moisture reconstructions in western North America. Nota-
bly, SLP reconstruction skill is enhanced in the oceanic region south of Alaska that is strongly associated with wet
winters in western North America. The results suggest that the AA method is approaching optimality in this test case,
driven by the quality of the paleoreconstruction information used to drive the AA process, along with the realism of
the climate model employed, to which the KF postprocessing step is added. The derived reconstructions are then
used for evaluation of the relationship between winter SLP and precipitation in California over the past ∼450 years.
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1. Introduction

Quantitative reconstructions of past climates have tradition-
ally been based on statistical calibrations (e.g., Neukom et al.
2019; Wahl and Smerdon 2012; Jones et al. 2009; National
Research Council 2006; Cook et al. 1994) and other mathemat-
ical methods for relating current and past conditions: for ex-
ample, selection of analogs in multivariate spaces (Schenk
and Zorita 2012) and neural networks (Guiot et al. 2005), or
on experimental or in situ relationships between biological or
physical characteristics of proxy information and climate var-
iations (cf. Anderson et al. 2013). Proxy climate records, how-
ever, are by nature relatively sparse, irregularly distributed
over space and time, and sensitive only to some climatic varia-
tions. Paleoclimate model simulations forced by known or
estimated past boundary conditions provide an important
tool to enhance knowledge of climate system history (PAGES
2k Consortium 2019; PAGES Hydro2k Consortium 2017).
Mathematical climate simulations provide complete three-
dimensional climate trajectories; however, they are subject to
modeling deficiencies per se, limitations of resolution due to
computational intensity, and uncertainty in the external forc-
ing factors}especially in the paleoclimate context. In parallel

with assimilation methods that join model and observational in-
formation for forecasting and historical analysis of weather and
climate, climatologists (both “neo” and paleo) have recently ap-
plied formal methods to join paleo-observations with paleo-
model simulations (e.g., Steiger et al. 2018; Hakim et al.
2016; Schenk and Zorita 2012; Bhend et al. 2012; Widmann
et al. 2010). The goals of such assimilation in the paleoclimate
context are to exploit the different strengths of proxy-based
and model-derived information to enhance 1) reconstruction
skill, 2) the breadth of climate variables that can be recon-
structed, 3) the spatial coverage of reconstructions, and 4) the
estimation of reconstruction uncertainty.

Paleo-assimilation methodologies have generally been of
two forms: 1) analog assimilation (AA), which seeks to iden-
tify analog model states to those exhibited by existing climate
reconstruction data (Franke et al. 2011; Schenk and Zorita
2012; Gómez-Navarro et al. 2017; Neukom et al. 2019), and
then to extract from the simulations physically consistent as-
sociated states of climate variables that are difficult or impos-
sible to reconstruct from proxy information directly (Wahl
et al. 2019); or 2) employment of Kalman filter (KF)-type
schemes for adjusting “prior” states derived from climate
model output by comparing those states to existing proxy or
reconstruction information (e.g., Bhend et al. 2012; Hakim
et al. 2016; Steiger et al. 2018; Franke et al. 2020). In this paper,
we develop and evaluate a methodology for combining these
two approaches in the paleo-reconstruction context, employing
the KF as a postprocessor coupled to AA output. This ap-
proach was reported by Pfister et al. (2020), in application to
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weather observations in Switzerland, and our application is
the first to accomplish it for spatially explicit paleoclimate
reconstruction.

An online variant of the AA has been used by Goosse
et al. (2010). In this variant, the analogs are not just se-
lected from an existing pool of simulated states, but rather
from an ensemble of simulations. This ensemble is started
from the conditions most similar to an initial proxy configu-
ration and run for several decades. At this point, the ensem-
ble is compared to an updated proxy configuration and the
process is started from this point in time. This method is,
however, only feasible with a simplified climate model, as
otherwise the computational requirements would be over-
whelming. To our knowledge, no AA1KF setup has been
developed for this AA variant.

A fundamental motivation of AA in paleoclimatology is
to exploit the large amounts of existing expert knowledge,
rigorous testing, and spatially explicit character of the pa-
leoreconstruction data assimilated. These characteristics
distinguish the AA method from direct KF-based paleo-
assimilation methods that rely on relatively simple (i.e.,
less expertise required) transfer models of climate state
priors into raw paleo proxy data, as has been the case in
paleo applications of KF-related methodologies that parallel
data assimilation in weather forecasting (e.g., Steiger et al.
2018; Hakim et al. 2016; Bhend et al. 2012; cf. Widmann et al.
2010). Critically important in paleo AA is a priori testing of
the climate model(s) employed, to identify simulation plat-
forms that realistically represent both the reconstructed varia-
bles assimilated, such as temperature, precipitation, and soil
moisture, and the desired output variables, such as large-scale
temperature, sea level pressure (SLP) or 200-hPa geopotential
height (GPH), and wind fields (Wahl et al. 2019; Diaz et al.
2016). Further testing is also done for parameters related to
the optimization of analog selection, so that the output skill
can be maximized in terms of independent validation against
observations or reanalysis output (Wahl et al. 2019; section 2
herein). These tests represent the functional optimization
equivalents of the formal rationales behind the KF methodol-
ogy (Bhend et al. 2012).

However, AA by itself does not take advantage of the
potential information available in the difference (or delta)
between the AA results and the original proxy-based recon-
structions assimilated, known as the “innovation” term in KF
terminology (Hakim et al. 2016; Lahoz and Schneider 2014).
The KF provides a natural method for doing this. In the context
here, the KF acts as a secondary processing step in which the
AA outputs for the desired reconstruction values serve as KF
priors, and the filter acts as a weighed gain function ($0, #1)
to determine the extent to which the innovations provide
useful information for nudging the original AA output. In
this application, the transfer model to enable commensu-
rability of the innovation components is a separate mathe-
matical relationship between the original reconstruction
variables assimilated in AA and the desired reconstruction
variables, determined independently from observations or
reanalysis output. This relationship can be relatively simple,
such as linear regression (if linearity is reasonable), since it

is in effect a kind of scaling between the AA input and de-
sired output states, all of which are already represented in
terms of climatological variables per se.

In addition, the KF and associated ensemble KF (EnsKF;
Steiger et al. 2018; Bhend et al. 2012; Whitaker and Hamill
2002) provide a natural and direct formalism for objectively
characterizing uncertainty in the combined AA1KF poste-
rior (or “analysis”) output. This is a further key advantage
of joining the two methods since it broadens the formal esti-
mation of uncertainty directly available in AA from the
variability of the selected analog states. In particular, add-
ing the KF postprocessing step allows explicit incorporation
of the uncertainty in the original assimilated paleorecon-
struction data themselves, via the residual errors derived
from the transfer relation described immediately above.
These errors help determine the KF gain: reducing the gain
in proportion to their size and in turn reducing the nudging
of the AA output priors.

Here, we detail our implementation of the AA1KF meth-
odology in the paleoclimate context, utilizing for this purpose
an example of AA that has been developed and analyzed in
detail in previous work (Wahl et al. 2019; Diaz et al. 2016).
After describing the methods (sections 2a and 2b), we report
testing and validation of AA1KF in relation to reconstruc-
tion of winter [Decembert21–Februaryt (DJF)] circulation
variables (SLP and 200-hPa GPH) in the northeastern Pacific
and adjacent west coast of North America, based on assimila-
tion of spatially explicit paleoreconstructions of temperature
and moisture variables from western temperate North America
(sections 2a and 3a). We then apply the derived SLP information
to evaluation of the relationship between northeast Pacific winter
SLP and California (CA) precipitation over the past 450 years
(section 3b), paralleling recently reported paleo-evaluation of the
relationship between 200-hPa (effectively, jet stream) winds and
CA precipitation and fire regimes (Wahl et al. 2019).

Precipitation in CA displays a strongly “Mediterranean”
seasonality, with wet winters and dry summers (e.g., Seager
et al. 2019). Moisture delivery during the hydrological half-
year is caused by extratropical synoptic systems that advect
from the North Pacific, whose track and intensity modulate
the distribution of precipitation along the western U.S. coastal
regions (e.g., Chang et al. 2002). The factors that influence the
extratropical cyclones have been found in several studies to
be related to the position of the jet stream and the seasonal
Aleutian low-pressure cell (Conil and Hall 2006; Haston and
Michaelsen 1997; Castello and Shelton 2004; Pandey et al.
1999; Cayan and Roads 1984), and at times these cyclones also
entrain subtropical moisture plumes to form “atmospheric
river” events (e.g., Dettinger 2013). El Niño–Southern Oscilla-
tion additionally has a teleconnected impact on precipitation in
this area (e.g., Hoell et al. 2016; Mo and Higgins 1998; Schonher
and Nicholson 1989).

Our application focuses on an important aspect of the
relationship between SLP and precipitation in CA: the
asymmetry observed, notably in Southern CA, between
high precipitation and low SLP in the wettest years versus
the relationship between low precipitation and high SLP in
the driest years. Low winter-average SLP associated with
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the wettest precipitation years is generally not as extreme
as the precipitation itself, whereas high winter SLP and low
precipitation of the driest years show similar extreme ex-
cursions. Finally, we summarize and discuss the develop-
ment and application of the AA1KF method in broader
terms and indicate potential future directions for its appli-
cation (section 4).

2. Methods

a. Essential aspects of the AA method

The AA-derived winter SLP and 200-hPa reconstructions
for the northeast Pacific–North American west coast region
were initially described and evaluated in Diaz et al. (2016)
and Wahl et al. (2019). The essential aspects of this method
specific to these reconstructions are summarized below. Addi-
tional information regarding the AA method for climate re-
constructions can be found in Schenk and Zorita (2012) and
Graham et al. (2007).

As employed here, AA combines proxy-based gridded cli-
mate reconstructions and the output of a climate simulation to
produce a spatiotemporally complete three-dimensional re-
construction of the climate over the period spanned by the
proxy records. Input data for the AA algorithm are 1) a set of
annually resolved, proxy-based, reconstructed climate fields
(e.g., spatially resolved temperature, soil moisture, precipita-
tion) over a certain period and 2) the output of a long climate
simulation from a climate model over approximately the same
period covered by the proxy records (although this is not a
strict condition) and with the same, or nearly identical, varia-
bles as the reconstructions. The simulation used here has been
forced by the known or estimated external forcing factors
over the past centuries, including solar irradiance, atmo-
spheric aerosols and greenhouse gases, and land use. In
theory, any climate simulation or gridded observations pro-
ducing physically consistent fields could be used as well as a
source of analogs. It is advisable, however, that the variabil-
ity in the analog pool is wide enough to represent the vari-
ability of the target fields. In this respect, a long, externally
forced, atmosphere–ocean coupled simulation may be more
suitable. Wahl et al. (2019, see their supplemental information)
provide detailed information regarding climate simulation charac-
teristics, evaluation, and selection, which led to usage of the Max
Planck Institute (MPI) ESM-P Earth system model (Giorgetta
et al. 2013).

For one point in time in the past, denoted as t, the spa-
tially resolved climate reconstructions for t are set as the
target pattern. The AA algorithm identifies analogs to that
target pattern from the entire climate simulation. The ana-
logs are defined as the time steps in the simulation for
which the simulated fields spatially match the reconstruc-
tion patterns as closely as possible. Once similar “analogs”
are identified, t1, … , tn, the desired atmospheric and ocean
fields (e.g., SLP or 200-hPa fields) for the time steps t1, … , tn
are extracted and averaged. This average is defined as the AA
climate reconstruction for time t.

The analog reconstruction depends on several factors. One
is the definition of similarity between the simulated climate
fields and the target pattern. A typical definition of “distance”
between these patterns is the multivariate Euclidean distance
(e.g., the root-mean-square difference between the two fields).
Here we adopt this is the metric and apply it to temporally
standardized time series (see section 2). We note that the
squared chord distance was also evaluated since that multivar-
iate distance metric has been identified as highly useful in
some other paleoenvironmental contexts, but it performed
similarly to the Euclidian distance and the latter was utilized
in these reconstructions (Wahl et al. 2019). The dimensional-
ity of the space in which the search of analogs is conducted is
also relevant. If this dimension is too high (i.e., for a spatially
extended climate field containing too many independent de-
grees of freedom), the pool of potential analogs has to be very
big to span a very large, high-dimensional volume of the
search space. The dimensionality can be reduced by projecting
the fields onto a few leading principal components (PCs) re-
sulting from a principal components analysis (PCA). In this
fashion, the analog search is conducted in a much smaller di-
mensional volume and the chances to find suitable analogs are
much higher. If the leading PCs span most of the variability,
the identified analogs will capture the main features of the tar-
get field. Here, we apply this PCA-based preprocessing, which
also offers additional advantages for the computation of some
of the required matrices in the KF postprocessing (section 2b).
Numerically, eigen-space reduction additionally significantly
reduces computation time, which is nontrivial for the AA
method with sufficient size of the data grids and time steps in-
volved (for both the original reconstruction variables and the
potential simulation analogs), as implemented here. At the
completion of the AA1KF process, the desired posterior var-
iables are retransformed into their original states

An important hyperparameter in the AA is the number of
analogs that are considered to match the target and, there-
fore, selected as possible realizations of the large-scale climate
field. Pseudoproxy experiments (e.g., Gómez-Navarro et al.
2017) clearly indicate that the correlation between reconstruc-
tion and target increases when the number of accepted ana-
logs increases from one to a few tens (depending on the
specific problem at hand), but that the temporal and spatial
variance of the reconstructed fields also diminishes. This re-
sult is logical. As the number of potential analogs grows, their
averaging filters out noise. On the other hand, the amplitude
of extreme anomalies is not well replicated as a result of aver-
aging analogs, not all of which can accurately resemble a par-
ticular extreme target field (section 2b). To produce the AA
reconstructions in Wahl et al. (2019), we set the number of
analogs to N 5 15. This is a heuristic choice made from the
analysis of self-reconstruction tests. In those tests, the gridded
temperature, precipitation, and soil moisture reconstructions
are replaced by their climate model counterparts and the SLP
is reconstructed searching for analogs in the climate model
output, excluding the target year which would result in a per-
fect match. This reconstructed model SLP field is compared
to the model SLP field and their root-mean-square error
(RMSE) is calculated. The RMSE displays a relatively flat
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minimum around N 5 15, so that this choice is not very criti-
cal as long as it is remains within the boundaries 10–25. Here,
we also tested the improvement in the AA1KF setting with
N 5 30. With this sample size, the estimation of the matri-
ces involved in the KF step (the prior error covariance B,
the observations error covariance R, and the gain matrix K;
see section 2b) is arguably more robust, but the AA recon-
struction itself already displays diminishing correlation
skill in relation to an independent reanalysis target, mak-
ing the application of the complete AA1KF scheme less
meaningful.

The AA reconstruction is, in theory, global since we use
the output of a global climate model. However, the informa-
tion encapsulated in the reconstruction records is regionally
limited (here, the western United States and small portions of
northern Mexico and southwestern Canada) and may include
just one or a few variables. The skill of the AA reconstruction
is, therefore, generally limited to the region(s) and to the out-
put variables that are physically associated with the region(s)
where the input reconstruction records are located (Wahl et al.
2019). This skill can be assessed by comparing the AA recon-
struction with observations in a period of overlap; we note
that the AA method as applied in this context does not incor-
porate instrumental or reanalysis observations of its output
variables so that this skill evaluation represents an entirely in-
dependent validation (section 3a).

In the studies by Diaz et al. (2016) and Wahl et al. (2019),
whose output we employ here, the AA reconstructions of the
winter atmospheric circulation in the northeast Pacific incor-
porated three predictor datasets: 1) tree ring–derived gridded
reconstructions of late winter [February–March (FM)] 2-m air
temperature in temperate western North America (Wahl et al.
2014); 2) tree ring–derived summer [June–August (JJA)]
near-surface soil moisture over the southwestern United
States [Cook et al. 2010a; the North American Drought Atlas
(NADA)]; and 3) gridded “water year” [WY; from October
of the previous year (t 2 1) through September of the current
year (t)] precipitation in CA, based on tree ring–derived
streamflow reconstructions (Diaz and Wahl 2015; Wahl et al.
2017). These three variables are physically related to the
northeast Pacific/western coastal North America atmospheric
circulation (cf. St. George et al. 2010), even at 200 hPa, and
potential analogs for them were searched in climate simula-
tions as described in Wahl et al. (2019; see their supplemental
information). The search of analogs is conducted simulta-
neously for all three variables. The gridded reconstructions
are concatenated in an augmented field, after a normalization
of the respective amplitudes of variation to align the variances
of all three fields. As noted, the augmented field is subject to
a PCA and only the leading modes resulting from this analysis
are retained, generally on the order of five PCs. The climate
model data are then projected onto these spatial modes, thus
ensuring that the PCA axes are the same for the reconstruc-
tions and in the model output. The combination of the three
seasonal predictors into an augmented field and their prep-
rocessing by PCA also should result in a more normal dist-
ribution of their values, blurring the usually nonnormal
distribution of pointwise precipitation at short time scales.

This point is relevant in the ensuing KF postprocessing
(section 2b). In principle, the model analogs could also be
searched in a long control run of an atmospheric model that is
forced by boundary conditions that vary only with the
seasonal cycle. However, an externally forced, fully coupled
climate model run can arguably provide better coverage of
the paleoclimate variability and thus provide better analogs.
Since the coupled paleoclimate simulations are long (over
1000 years), there is no compelling reason to not use them.

All reconstruction and simulation variables were regridded
to the 28 3 28 NADA grid. The skill of the reconstructions
was assessed by comparing the AA reconstructed fields of
SLP and 200-hPa GPH with those of the Twentieth Century
Reanalysis version 2 (20CR; Compo et al. 2011; Slivinski et al.
2019), also regridded to the NADA grid scale. The compari-
son was done over the portion of the AA and reanalysis over-
lap during which the reanalysis has significantly lower internal
ensemble variability, 1930–80 (Diaz et al. 2016, see their
supplemental information). The skill is good in the northeast
Pacific sector and into adjacent western North America, with
highest correlations of ∼0.65 for the interannual variations of
both winter SLP and 200-hPa GPH; relatively high values also
extend into the tropical Pacific at the 200-hPa level [Wahl
et al. 2019, their Figs. S5b,d; companion values for the
“coefficient of efficiency” metric (CE; Cook et al. 1994) are
provided in their Figs. S6b,d].

The information contained in the three predictor variables
can to some extent overlap. In Wahl et al. (2019) we addition-
ally evaluated the relationships between the predictor variables,
finding that the FM temperature and NADA reconstructions
are functionally independent (low empirical correlations,
even at the grid cell level). The FM winter temperature and
CA precipitation reconstructions are also functionally inde-
pendent in this way. There is high ($0.7) correlation between
some of the NADA grid cells and the CA precipitation grid
cells. From the standpoint in that study, these relationships
were found not to introduce problematic predictor redun-
dancy that reduced skill in independent validation; rather, in-
cluding those NADA grid cells in fact improved validation
spatial skill. In the context of this paper, these relationships
do indicate empirical overlap between the CA precipitation
reconstruction and some of the NADA grid cells used in the
AA reconstructions of circulation. This overlap is also
strongly present in the southwestern United States in instru-
mental data (St. George et al. 2010), representing the funda-
mental hydroclimate feature that southwestern regional
summer soil moisture is strongly correlated with antecedent
winter precipitation (including CA as a core region), which it-
self is strongly related to northeast Pacific circulation condi-
tions. [We note that a wider fall-to-spring (Octobert21–Mayt)
precipitation seasonality is strongly correlated with DJF pre-
cipitation in CA, at r 5 0.85 (NCEI 2019).] This physical cor-
relation between temperature and precipitation is reflected in
the correlation between their respective gridded reconstruc-
tions, indicating it is not caused by spurious (nonclimatic) cor-
relations between different dendrochronologies from the
same region that are incorporated into the reconstructions.
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These AA-derived reconstructions are available via the
World Data Service for Paleoclimatology (NOAA-NCEI;
https://www.ncdc.noaa.gov/paleo/study/20465 for SLP and
https://www.ncdc.noaa.gov/paleo/study/26030 for 200-hPa
u and V wind fields).

b. Essential aspects of the KF for use as AA
postprocessor

The fundamental formulations of the KF methodology are
provided in Eqs. (1) and (2) for the KF expected value (EV)
and Eqs. (3)–(6) for the EnsKF (or Ens), following the exposi-
tion of Steiger et al. (2018):

xa 5 xb 1 K[y 2 H(xb)], (1)

K 5 BHT(HBHT 1 R)21, (2)

xa 5 xb 1 K[y 2 H(xb)], (3)

x′a 5 x′b 1
~
KH(x′b), (4)

~
K 5 BHT[(

���������������
HBHT 1 R

√
)]T(

�������������������
HBH

T
1R1

���
R

√√
)21, (5)

xa 5 xa 1 x′a: (6)

In Eq. (1) xb is the prior mean state vector, the spatially ex-
plicit output of the AA algorithm described in section 2a
above. The delta [y2H(xb)] is the “innovation” term desc-
ribed in section 1, incorporating the difference between the
original reconstruction observations assimilated in the AA
process, y, and the AA output priors converted into the state
of the original reconstruction observations by the operator H.
In our development, H (which in general can be nonlinear) is
formed as the matrix of simple regression slope coefficients,
H, of the three original reconstruction variables on the spatial
SLP and 200-hPa states as determined from the 20CR, all in
their reduced PC form. These regressions and corresponding
PCAs are estimated during the optimum period of overlap be-
tween the 20CR and the original reconstruction variables as
noted in section 2a, 1930–80. The operator K is the Kalman
gain matrix, whose formulation is outlined in Eq. (2). This
matrix has the effect of being either a 1:1 multivariate gain op-
erator for the information represented by the innovations, or
some reduction of that gain between 1:1 and 0, with 0 repre-
senting no added information value from the innovations.
This gain is governed by the “ratio” between the inherent un-
certainty/variability of the AA output}in this case the covari-
ance matrix of xb, B, normalized into the terms of the
reconstruction observation space by H, and the covariance
matrix of the observational errors associated with the H ma-
trix regressions, R. That is, the smaller the R error covariance
values are relative to those of normalized B, the more K ap-
proaches the 1:1 gain state; the larger the R values are relative to
those of normalized B, the more K approaches the 0 gain state.
In this way, the relative precision of the AA priors vis-à-vis
the accuracy and precision of the H regressions (combining
both the linear transfer of the pressure variables to the

original reconstruction y values and the inherent errors in the
reconstructions per se) governs the extent to which the inno-
vation information is considered useful to adjust the first-
order AA output; represented in Eq. (1) as xa, the “analysis”
posterior in KF terminology. This is how the action of the KF
postprocessing step occurs when coupled to the AA output
as its priors, and represents the direct EV operator of the
AA1KF output.

Equations (3)–(6) indicate how the ensemble of analogs se-
lected by the AA algorithm is additionally exploited via the
KF method to provide a natural formalism for describing the
uncertainty in the combined AA1KF output. In the follow-
ing, we assume that all individual members of the analog
ensemble are a priori equally likely, thereby providing an un-
biased sampling of the prior probability distribution. This as-
sumption is not strictly correct since the Euclidean distance of
each analog to the target is not the same; however, the simi-
larity between the target and each Nth analog, for N 5 1–15,
is a generally a rather smooth, slowly decreasing, function of
N within this range. This characteristic makes the assumption
tractable in our application. As noted, N 5 15 represents an
empirical optimum when the AA method is tested for its abil-
ity to “self-reconstruct” the SLP and 200-hPa fields. A corol-
lary result of this process would be that the most reasonable
representation of the uncertainty in the AA reconstruction
is provided by this number of selected analogs, discussed fur-
ther in the following subsection on estimation of the R and B
matrices.

Here, Eq. (3) is identical to the way Eq. (1) is used: xb is
simply the AA mean state output noted above and K is identi-
cal to its definition in Eq. (2), thus the xa AA1KF posterior
output in Eq. (1) is identical to the xa posterior in Eq. (3). The
terms x′a and x′b in Eqs. (4) and (6) represent deviations from
their respective mean state vectors for all the selected analogs
in the AA process and thus have the form of matrices rather
than vectors as in Eqs. (1) and (3), and K as defined in Eq. (5)
represents the equivalent of K when used with the deviation
values in Eq. (4). Note that in Eq. (4) only the x′b deviations
are gain-weighted by K; the innovations with respect to the
originally assimilated reconstruction values, y, do not appear
since they are already included in the mean state formulation
in Eqs. (3) and (6), giving rise to the form of Eq. (5) for K.

ESTIMATION OF THE R AND B MATRICES

As noted, the observational error-covariance matrix R is the
defined as the covariance of regression residuals of the linear
operator H, both defined in the PCA space. In the AA1KF
implementation we have developed, an assumption of zero
cross-covariances among observational data errors (cf. Steiger
et al. 2018; Bhend et al. 2012) is not tenable since the methods
used to construct the gridded reconstruction data assimilated
in the AA process allow for nonzero cross-correlated errors.
These errors, also defined in the PCA space, can be spatially
long-range correlated, but the reduced effective dimensionality
ensures that this does not lead to computational instability.
Thus, R is generally a full, nondiagonal covariance matrix, but
since it is estimated within a space of reduced dimensionality,
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there is no need to apply additional methods (e.g., covariance
localizations to suppress spurious correlations) that are other-
wise more usual in KF settings (Bhend et al. 2012).

Following from the discussion above, the sample size
N 5 15 to estimate the B covariance matrix is recognized as
small, but as outlined in section 2a it cannot be much enlarged
without inclusion of less suitable analogs (note the effect of
setting N 5 30), thereby worsening the skill of the AA meth-
odology per se, and making the application of the complete
AA1KF scheme less meaningful overall. Thus, we conclude
it is reasonable to estimate B using the evaluated best sample
size of analogs, and note that the dimension reduction also in-
creases the relative “ratio” between the sample size employed
and the size of the space for which B needs to be estimated.
From a strictly computational standpoint, by reducing the ef-
fective number of degrees of freedom of the state vector to a
few leading PCs we also achieve a more stable estimation of B
and R and of the inverse matrices involved in Eqs. (2) and (5),
Otherwise, the respective K gain operators can become nearly
singular, thereby making the inversions unstable or numeri-
cally impossible to compute. Note that the use of N analogs to
estimate B is logically consistent with the use of these analogs
to estimate the prior state xa. Hakim et al. (2016) use the
whole simulation output to estimate xa and also, consistently,
use the whole simulation output to estimate B.

We note that these more stable estimations via dimension
reduction additionally reduce the impact of the original re-
constructions’ errors within the formulation of the B matrix,
and thus help to isolate the B matrix from the R matrix.
This isolation/damping arises numerically because dim-
ension reduction via PCA to a few leading components
inherently reduces noise, that is, variation in lower-order
dimensions that carries little of the data’s overall informa-
tion content and that more and more represents random
variability through the decreasing orders. This outcome of
the application of dimension reduction is a well-understood
property that is one of the significant reasons for the use of
PCA. The original reconstructions assimilated into the AA
process have well-behaved (effectively random) residual
errors [Wahl et al. 2014; Diaz and Wahl 2015; see the evalu-
ation of the Cook et al. (2010a) reconstruction by the
authors], and thus their influence on the selection of ana-
logs in this context will be greatly damped by the dimension
reduction, per se.

More generally, the observational errors (in this case repre-
senting explained/unexplained variability when the original
reconstructions are projected into the space of the output var-
iable, SLP or 200-hPa geopotential, determined from the H
matrix regressions) could lead to systematic bias in the covari-
ance structure B of the AA priors if the original reconstruc-
tions exhibit bias from their true EVs. The reconstructions
assimilated are effectively unbiased in postcalibration evalua-
tion, as noted. Thus, while for any given time step their devia-
tion from the true reconstruction EVs could have an impact
on analog prior selection, the overall effect of such impacts
will be nonsystematic vis-à-vis the analog pool over the entire
reconstruction period. In turn, the effect on the estimation of
B from the selected analogs throughout the reconstruction

period will also generally be overall unbiased in relation to
the assimilated reconstructions, with the following potential
exception. At a few time steps, the sets of selected analogs
can be overall biased, namely for those time steps in which
the true target pattern plus its noise realization render it an
extreme pattern. In those cases, the set of selected analogs
will tend to be less extreme, in turn leading to the error in the
set of AA reconstructed states to not be independent of the
errors in the observations. The number of these situations is,
however, small. We conclude overall that these considerations
justify the usage of the original reconstruction errors in the
formulation of the R matrix as reasonably independent of the
formulation of the Bmatrix.

3. Results

a. Testing and validation of the AA1KF method

Figures 1 and 2 show reconstruction skill, in terms of correla-
tion, obtained using the AA method only and from the ex-
pected value (EV) of the joined AA1KF process (SLP in Fig. 1
and 200-hPa GPH in Fig. 2). The rationale of not also using
the root-mean-square error as a measure of skill in this con-
text lies in the nature of the AA. AA essentially resamples
from a climate model output, so that the reconstruction bias is
impacted by the bias of the climate model. This can eventually
be corrected by realigning the simulation data toward relevant
observations, but this does not add any further intrinsic meth-
odological skill. The reconstruction variance is also dictated
by the variance of the simulated data. This can also be simply
adjusted to observations, but again without necessarily dem-
onstrating good skill in the reconstruction of the variance.
Thus, in the context of the AA, the most critical measure of
methodological skill remains the temporal correlation be-
tween reconstructions and observations. In contrast to mean
bias, a good correlation is indicative that meaningful analogs
can indeed be selected, rendering it a relevant measure of re-
construction skill. We note that, since the paleo and model
data incorporated in the reconstructions are entirely indepen-
dent of the SLP observations and model platform used to im-
plement the 20CR reanalysis, the comparison represents an
entirely independent validation, logically parallel to an out-of-
sample validation in the context of a statistical reconstruction.
In both cases, there is modest but clear improvement with the
addition of the KF postprocessing step. In the case of SLP
(Fig. 1), there is a strengthening of validation success to corre-
lation values 0.7–0.8 precisely in the core region of northeast
Pacific anomalous low pressure known to be associated with
wet winters in North America (Wahl et al. 2019; see their
Fig. S1, right panel) and dry northeasterly winter conditions
in Hawaii (Diaz et al. 2016; see their Fig. 1, top panel). This
result is important beyond its meaning vis-à-vis skill, as it
highlights the physical realism of the entire through-process
of the foundational AA method. This physical realism is
supported by the higher reconstruction skill of the AA
method precisely in the region of the Pacific atmosphere
that most importantly drives the temperature and precipita-
tion anomalies in the western United States. This clearly
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indicates that the selection of simulated analogs is ulti-
mately dictated by realistic physical mechanisms and that
these are well represented in the climate simulation, most
notably of the climate model used (MPI ESM-P). Second,
the KF refinement is also most strongly realized in this core
region, also indicating that the improvement brought about
by this refinement is also able to identify these physical
mechanisms.

There is some contraction of the spatial extent of skill val-
ues between 0.6 and 0.7 surrounding the maximum region,
but at the same time there is extension of stronger skill values
into southwestern Alaska and the nearby Bering Sea region.
In the case of 200-hPa GPH (Fig. 2), there is an expansion of
the region of higher skill levels in western temperate North
America and the nearby Pacific, with the highest correlation
values including areas nearer the coastlines of the U.S. states

FIG. 1. Spatial correlation between reconstructions of boreal winter (DJF) SLP and corresponding 20CR data, for
the (a) AA and (b) AA1KF reconstruction methods outlined in the text. The period of comparison is 1930–80, cover-
ing temporal overlap of reconstruction and reanalysis datasets during which the 20CR is considered most reliable
based on its internal ensemble variability (Diaz et al. 2016; see the supplemental information therein).

FIG. 2. As in Fig. 1, but for DJF 200-hPa GPH fields.
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of Washington, Oregon, and Northern CA. As with SLP. We
note again the identification of the core regions of known
drivers for, for the relationship of northeast Pacific 200-hPa
u and y wind fields with CA precipitation and fire indices
(Wahl et al. 2019; their Fig. 1), highlighting the physical real-
ism of the entire model and postprocessing chain (climate
model, AA method, and AA1KF refinement).The overall
closeness of the AA-only and AA1KF results also indicates
that the addition of the KF postprocessing component does
not introduce spatial instability or other distortions to the
overall reconstruction process.

These improvements indicate that the inclusion of the KF
postprocessing component with the AA-only results does
indeed identify and exploit useful information from the in-
novation terms, even given the inherent uncertainty in the

paleoreconstructions that helps govern the potential KF
gain involved. The modest nature of the improvements within
this context suggests that the AA method by itself is nearing
optimality in this region-specific case. This occurrence is at
least to some degree expectable, considering the relatively rich
coverage of regional gridded paleo-reconstructions in western
North America that are physically suitable for reconstruction
of upstream pressure and winds features in the northeast
Pacific. Additional considerations for further skill improv-
ement within this region, per se, and the potential for enhance-
ment of the AA method by the KF postprocessor in other
regions are taken up in section 4.

The ensemble Kalman filter methodology, encapsulated in
Eqs. (5) and (6), provides the median reconstruction and an
estimate of the spread of the reconstruction uncertainty,

FIG. 3. As in Fig. 1, but for AA1KF Ens (rather than EV) SLP output: (a) as in Fig. 1a, for AA-only output; (b) as
in Fig. 1b, but showing AA1KF Ens median output; (c) AA1KF Ens 80th percentile output; and (d) AA1KF Ens
20th percentile output. Noncolored grid cells indicate tropical areas with little DJF variability to estimate upper and
lower percentile values. The missing data in (c) and (d) are the result of null temporal variability in a few grid cells in
the 20CR reanalysis.

J OURNAL OF CL IMATE VOLUME 355508

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:01 PM UTC



which in this case we quantify with the 20th–80th percentiles
of the ensemble. This is a natural product of the EnsKF and
represents a distinct extension that it provides to the AA-only
results. The validation performance of the AA1EnsKF for
SLP is shown in Fig. 3. The median results from the ensemble
(Fig. 3b) are spatially quite close to those of the EV (Fig. 1b),

although slightly less skillful at the maximum and more like
those attainable by the AA method alone (Figs. 1a and 3a).
The 20th and 80th percentiles (Figs. 3c,d) show quite reason-
able skill decrement/enhancement relative to the median, in-
dicating good utility of the EnsKF for uncertainty estimation
in the context of the combined AA1KF method. The overall

FIG. 4. Reconstructed WY precipitation (blue) for (top) Northern (N), (middle) Central (C), and (bottom) Southern (S) CA regions
(Wahl et al. 2020), and DJF SLP index (salmon) for the 328–458N, 1118–1328W grid box as developed with the AA1KF method described
herein. The time period is 1571–1977 (coverage of precipitation data). Precipitation values are standardized anomalies and SLP values are
inverted anomalies in hPa, both relative to full reconstruction period.
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character of the EnsKF results represents additional confir-
mation that the joining of the KF as postprocessor with the
AA method is both algorithmically and physically reasonable.

b. Northeast Pacific winter SLP and California
precipitation over the past 450 years

As an example of real-world employment of the AA1KF
reconstructions, we evaluate the relationship between the SLP

reconstruction and reconstructions of CA WY precipitation
(Fig. 4). The reason for probing this relationship in more de-
tail is, as mentioned in section 1, to illustrate its nonlinear
character for extreme hydrological years in that region of
North America. Typically, climate reconstruction methods as-
sume a linear relationship between the proxy record and the
driving climate conditions. A notable feature of the AA
method, and therefore also of the AA-KF implementation, is

FIG. 5. As in Fig. 4, but for instrumental (precipitation; NCEI 2019) and reanalysis (SLP; 20CR, Compo et al. 2011; Slivinski et al. 2019)
data. Time period is 1896–2013.
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their straightforward capability to capture nonlinear relation-
ships, provided that the pool of analogs sampled from the cli-
mate simulations is realistic in this regard. Particularly in
Southern CA, the relationship between high precipitation and
low SLP in the wettest years versus the relationship between
low precipitation and high SLP in the driest years is asymmet-
ric. The reason for this asymmetry lies in the different physical
mechanisms that operate in extreme precipitation years. In
the wettest years, precipitation is often concentrated within a
few days or weeks and is delivered by the passing of a few
strong extratropical cyclones or even atmospheric rivers, ac-
companied by low values of the SLP. Thus, the seasonally av-
eraged SLP is subdued relative to the amplitude of the
seasonally accumulated precipitation. By contrast, very dry
years are caused by atmospheric blocking, with longer periods
of anomalously high SLP that more strongly affect the

seasonally averaged SLP (Fig. 4, bottom; cf. Fig. 5, bottom).
Many positive peaks of precipitation (blue line) are not ac-
companied by corresponding negative peaks of SLP (red line;
note the inverted scale), whereas negative peaks of precipita-
tion are more frequently matched or nearly matched by corre-
sponding positive peaks of SLP.

This difference can be viewed more analytically via the em-
pirical cumulative density distributions (called “CDFs” for
convenience) of precipitation and SLP, along with the corre-
sponding quantile–quantile (QQ) relationships between these
variables (Figs. 6 and 7; see also Fig. A1 in the appendix). The
precipitation distribution is skewed dry with a long tail to
wet extremes, whereas the SLP distribution is relatively
more symmetric/normal in character. Central and particu-
larly Southern CA stand out in this comparison in the re-
construction data: both over the full reconstruction period

FIG. 6. Empirical CDFs of reconstructedWY (left) precipitation (mm) and (center) SLP (inverted hPa), along with (right) corresponding
QQ plots, for the (top) N, (middle) C, and (bottom) S CA regions. The time period is 1571–1977 as in Fig. 4, with the same data sources.
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1571–1977 (Fig. 6) and from 1571 to 1895 to be separate of
the instrumental data (see Fig. A1 in the appendix). Both
central and Southern CA stand out as skewed in the instru-
mental data from its start in 1896–2013 (the end of the re-
cord for the SLP data used) (Fig. 7). We note that apparent
differences between the reconstruction and instrumental
precipitation CDFs in Figs. 6, 7, and A1, especially for cen-
tral CA, are in fact related to differences in the scaling of
the x axes, since the reconstruction data include drier years
than experienced in the instrumental record. Referencing
all data on identical axes and smoothing shows much
smaller differences and highlights the extended extreme
dry observations of the reconstruction record (see Fig. A2
in the appendix). The summed absolute differences be-
tween the smoothed CDFs are not significant (at any level
p # 0.5) relative to a resampling Monte Carlo analysis of

random CDF summed absolute differences (see text associ-
ated with Fig. A2).

More dynamically, evaluation of winter daily SLP values
associated with the extreme wet and dry deciles of seasonal
winter precipitation since 1950 (Fig. 8) indicates that daily-level
low pressure extremes are highly significantly associated with
the wettest years, whereas daily high pressures are not as
strongly associated with the extreme dry years. Although this
characteristic is derived from instrumental/reanalysis data only
(we know of no climate proxy information that could be used to
constrain reconstruction of daily SLP values), it is reasonable to
assume that it has been the case over the reconstruction period
as well. As noted, this difference highlights the important role
in CA moisture delivery played by individual storms or sequen-
ces of them, sometimes associated with entrained subtropical
moisture plumes to form atmospheric rivers, whereas the

FIG. 7. As in Fig. 6, but for instrumental (precipitation) and reanalysis (SLP) data. The time period is 1896–2013 as in Fig. 5, with the same
data sources.
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overall dry characteristic of CA’s climate is less influenced by
particularly strong high pressure. This enhanced risk profile is
an important consideration from the perspectives of water re-
source development and allocation, emergency management,
and infrastructure engineering in one of the world’s largest
economies and most populated regions in North America
(Wahl et al. 2017).

4. Summary and discussion

The work presented here combines the analog assimila-
tion method with a Kalman filter to produce an improved
AA climate reconstruction. Our method follows and ex-
pands on the application developed by Pfister et al. (2020)
to assimilate historical observations (of temperature) that
are spatially and seasonally collocated with the model do-
main. Here, our methodology aims at the assimilation of
spatially and seasonally non-collocated proxy reconstruc-
tions of several variables (summer soil moisture, winter
temperature, and water year precipitation) to reconstruct a
different target variable (winter sea level pressure). The re-
sults are successful from the standpoint of both mathematical/
algorithmic and operational characteristics of the joining,
which can be described technically as utilizing the KF as a
postprocessor to the fundamental AA output. The joined
methodology importantly easily allows direct incorporation of
different proxy-based reconstructions (which may also repre-
sent different seasonalities), based on the expertise, rigorous
testing, and skill-seeking improvement of the existing spatial
paleoreconstructions of climatological variables themselves,
rather than the need to rely on additional statistical modeling

of the links between proxy observations and KF priors. This
exploitation of existing high-quality reconstructions that are
closely physically related to the reconstruction target variables
is a key motivator of the AA1KF joining.

The skill gains we find from addition of the KF postproces-
sor component are overall modest in our test case of recon-
structing SLP and 200-hPa fields in the northeast Pacific
utilizing downstream paleoclimatic temperature and moisture
reconstructions in western temperate North America. This
can be due to the already good skill of the AA in this particu-
lar application (Wahl et al. 2019). The peak correlations be-
tween reconstructions and 20CR reanalysis in the northeast
Pacific are in the range 0.6–0.7, which, considering the inter-
mediate steps involved}analog selection from a climate
model output, and use of gridded tree ring–based reconstruc-
tions of different variables}is already a remarkable set in
comparison to other reconstruction methods, such as direct
calibration to proxy data. We believe that the KF refinement
could potentially provide a clearer improvement in cases in
which the quality of the proxy-based reconstructions is less.
Notably, though, SLP reconstruction skill is specifically en-
hanced in the oceanic subregion south of central Alaska that
is strongly associated with both wet winters in western North
America and dry northeasterly winter conditions in Hawaii.
Our overall interpretation of these results is that the AA
method, per se, is already approaching optimality in the
test case situation, driven by the relative richness, quality,
and pressure-related characteristics of the paleoreconstruc-
tion “predictor” information assimilated and the physical
realism of the climate model employed, to which the KF
postprocessing step is then added. Whether additional skill

FIG. 8. Relative risk of daily SLP occurrences during (top) wet and (bottom) dry DJF seasons relative to neither wet nor dry winter
seasons, for (left) N, (center) C, and (right) S CA. EV (dot) and 95% confidence intervals (whiskers) are estimated from bootstrapped
random samples with replacement (n 5 10 000) drawn from the collection of neither wet nor dry seasons of a size corresponding to
either wet or dry seasons, with relative risk determined for each iteration. Green dot/whisker data indicate relative risk . 1 at 95%
confidence; red dot/whisker data indicate relative risk , 1 at 95% confidence.
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enhancements to the paleo moisture and temperature pre-
dictor reconstructions we have used could result in greater
skill enhancement for pressure variable reconstruction by
the KF postprocessing component is complex to evaluate.
Given the physical realism of the climate model information
utilized, the AA-component pressure reconstructions would
generally be expected to improve as well and thus the in-
novation terms themselves might be reduced in their po-
tential skill-enhancing impact. At the same time, greater
skill for the paleoreconstruction predictors would gener-
ally reduce the relative effect of the R matrix in Eqs. (2)
and (5) and thereby increase the gain characteristic of the
K matrices for incorporation of the innovation information.
Which effect might predominate is not determinate as a gen-
eral characteristic, but rather would need to be evaluated on
a case by case basis, such as that considered here regarding
the western North American predictor reconstructions.

Observing that the expected value (EV) output of the
joined AA1KF methodology slightly outperforms the median
output of the ensemble Kalman filter version, we recommend
experimenting with using the EnsKF results to determine
given percentile levels as 6 anomalies relative to the corre-
sponding median values and then adding these to the EV
results. Doing this would retain the best-performance char-
acteristic of the EV results while at the same time incor-
porating the enhanced uncertainty estimation provided by
the EnsKF formalism. Algorithmically, we highlight the
importance and successful use of orthogonal (eigenvector)
space reduction in the process as we have implemented it,
which also helps to ensure both computational stability
and efficiency.

Finally, we note it is possible that the joined AA1KF
method would add additional skill over the AA output itself
in other, significantly different, reconstruction situations, and

FIG. A1. As in Fig. 6, but for reconstruction data covering 1571–1895.
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for other final output variables besides pressure-related ones.
Our intent for further research is to apply the methodology to
the northeast Atlantic/western coastal Europe region, in that
context again with pressure fields as the target, where regional
paleoreconstructions of precipitation (Pauling et al. 2006), soil
moisture (Cook et al. 2015), and temperature (Luterbacher et al.
2016) are also available. The recent extension of gridded precipi-
tation reconstructions at global scale (Steiger et al. 2018), along

with the completion of other continental/subcontinental-scale
drought atlases (e.g., Cook et al. 2010b) and regional-scale tem-
perature reconstructions (e.g., Neukom et al. 2011), suggests
that exploration of pressure reconstructions for additional parts
of the globe will be worthwhile to undertake.

Acknowledgments. EW and EZ conceived and designed
the study. EZ implemented the AA and KF methodologies

FIG. A2. Empirical CDFs of precipitation in N, C, and S CA regions as in Figs. 6 and 7 and Fig. A1, but for (left)
instrumental data and (right) smoothed instrumental and reconstruction data using identical horizontal axis scaling
for both types of data. Red/blue dots at left and smoothed curves at right indicate instrumental data covering
1906–77 (red) and 1906–2013 (blue) (NCEI 2019); salmon smooth with dark center stripe at right indicates reconstruc-
tion data (Wahl et al. 2020) covering 1571–1895. For graphic presentation, lowess curves show ∼12-yr smoothing
period for instrumental data and ∼36-yr smoothing period for reconstruction data.
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APPENDIX

Empirical CDFs of Precipitation and SLP from
the Preinstrumental Period with Monte Carlo Estimation

of Differences between Reconstruction and
Instrumental Precipitation CDFs

Figure A1, corresponding to Fig. 6 in the primary text,
shows reconstruction data covering 1571–1895 separately
from the instrumental data, which start at 1896.

Figure A2 provides empirical CDFs of precipitation in N,
C, and S CA regions as in Figs. 6, 7, and A1, using identical
horizontal axis scaling for both types of data.

The summed absolute differences between comparable
36-yr subsamples of the reconstruction and instrumental
CDFs in Fig. A2 (all smoothed using ∼12-yr lowess) are not
significant at any level p # 0.5, thus inclusive of the com-
monly used 0.05 and 0.10 levels. A Monte Carlo analysis of
summed absolute differences between random 36-yr subsam-
ples of the smoothed reconstruction data (n 5 124750) was
used to benchmark significance. This sample size represents
all nonrepeating combinations of differences between 500
original random 36-yr subsamples.

The 36-yr subsamples were chosen to enable the sum-
ming of absolute differences between the three data periods
in a uniform and thereby directly comparable way. For the
three periods shown in Fig. A2}72 years for 1906–77 in-
strumental data (red; to the end of reconstruction period),
108 years for 1906–2013 instrumental data (blue; to the end
of SLP reanalysis data), and 324 years for 1571–1895 recon-
struction data (salmon with dark center stripe; to the end of
preinstrumental reconstruction data)}36 is the largest
number of years by which these periods can be divided
with resulting whole-number quotients (2, 3, and 9, re-
spectively). Along with identical horizontal axis scaling,
standardized-year sampling is necessary as the summation
of absolute differences between varying-length CDFs needs
to be based on the same number of differences in each case to
ensure direct comparability of magnitudes. This is done, for
example, by comparing each ninth element of the smoothed
reconstruction CDF with each third element of the 1906–2013
instrumental CDF. The smoothing similarly ensures that gaps
and relative “roughness” of the empirical CDFs do not bias
the difference calculations.
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Franke, J., J. F. González-Rouco, D. Frank, and N. E. Graham,
2011: 200 years of European temperature variability: Insights
from and tests of the proxy surrogate reconstruction analog
method. Climate Dyn., 37, 133–150, https://doi.org/10.1007/
s00382-010-0802-6.
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